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Schem
Treatment of acylnitroso-Diels–Alder [2.2.1] bicyclic adducts 2a–b with indium triflate in an alcohol sol-
vent induces ring-opening reactions to afford monocyclic anti-1,2-, anti-1,4-, and syn-1,4-hydroxamic
acids with good to excellent regio- and stereoselectivity (up to 7:86:7). Treatment of [2.2.2] bicyclic
nitroso adducts 2c–d under similar reaction conditions generates only anti-1,2- and anti-1,4-hydroxamic
acids with anti-1,4-product being predominant (up to 17:83).

� 2009 Elsevier Ltd. All rights reserved.
3-Aza-2-oxabicyclo[2.2.1]hept-5-ene systems (2), derived from
the hetero Diels–Alder reactions between transient acylnitroso
species and cyclopentadiene, are valuable precursors for a variety
of biologically interesting compounds.1 Acylnitroso adducts 2 are
susceptible to several modes of ring-opening reactions to introduce
different functionalities with defined stereo- and regiochemistries
(Scheme 1). For instance, cycloadducts 2 can be elaborated through
reductive cleavage of the N–O bond to form syn-1,4 aminocyclo-
ll rights reserved.

: +1 574 631 6652.
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e 1. Ring-opening reactions of 3-a
pentenols 3,2 or by oxidative cleavage of the C@C bond to afford
diacids 4.3 An alternate strategy to induce the ring-opening of 2 in-
volves the cleavage of the C–O bond through metal-mediated reac-
tions in the presence of nucleophiles. We and others have
demonstrated that the C–O bond cleavage can be induced by palla-
dium(0),4 ruthenium,5 rhodium,6 and Lewis acids7 to provide syn-
1,2, anti-1,2, anti-1,4, or syn-1,4-disubstituted cyclopentenes (5–
9) in a selective fashion. This route is of particular interest because
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za-2-oxabicyclo[2.2.1]hept-5-enes 2.

http://dx.doi.org/10.1016/j.tetlet.2009.12.006
mailto:mmiller1@nd.edu
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


2a: R1 = Bn, n = 1   2b: R1 = OtBu, n = 1
2c: R1 = Bn, n = 2   2d: R1 = OtBu, n = 2

NR2O
OH

NR2O
OH

N
OH

OR2

+ +
O

R1

O

R1

O

R1

N
O

O

R1
In(OTf)3

R2OH

1,2-anti 1,4-anti 1,4-syn

( )n

( )n ( )n ( )n

10a-10l 11a-11l 12a-12l

1 2

3
4

Scheme 2. In(OTf)3-mediated nucleophilic ring-opening reaction of 3-aza-2-oxabicyclo[2.2.1]hept-5-enes 2a–b and [2.2.2]oct-5-enes 2c–d.

Table 1
In(OTf)3-mediated nucleophilic ring-opening reactions of cycloadducts 2a–b (n = 1) with different alcohols

Entrya Substrate R2OH Temp (�C) Time (h) Products (n = 1) Yieldb (%) Product ratios,c 10:11:12 R1 R2

1 2a MeOH 25 1.5 10a–12a 63 7:86:7 Bn Me
2 2a iPrOH 25 2 10b–12b 63 8:76:15 Bn iPr
3 2a tBuOH 25 2 10c–12c 61 7:73:20 Bn tBu
4 2b MeOH 25 2 10d–12d 61 32:52:16 OtBu Me
5 2b iPrOH 25 2 10e–12e 64 26:57:17 OtBu iPr
6 2b tBuOH 25 2 10f–12f 59 23:57:20 OtBu tBu

a 0.5 equiv of In(OTf)3.
b Isolated yield.
c Determined by 1H NMR of crude reaction mixture.
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Scheme 3. Proposed mechanism for In(OTf)3-mediated nucleophilic ring-opening
reaction of acylnitroso adducts 2a–b.
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it allows the generation of a hydroxamic acid moiety, a key struc-
tural element in a wide range of biologically active compounds.8

Hydroxamates often act as potent and selective inhibitors of metal-
loprotease enzymes such as matrix metalloproteinases (MMPS),9

histone deacetylases (HDACs),10 and peptidyl deformylase (PDF).11

Previously, we reported Cu(II) and Fe(III)-mediated nucleophilic
ring-openings of 3-aza-2-oxabicyclo[2.2.1]hept-5-ene 2 with alco-
hols to afford synthetically useful 1,4-disubstituted hydroxamic
acid-containing aminocylopentenols.4c,7a Our continued interest
in hydroxamic acids led us to develop an improved and versatile
method for Lewis acid-mediated C–O bond cleavage reactions. In
this regard, we thought of identifying more efficient Lewis acids.
In recent years, indium(III) compounds have attracted a great deal
of interest as mild and water-tolerant Lewis acids inducing high re-
gio-, stereo-, and chemoselectivity in various organic transforma-
tions.12 Among the various In-based reagents, indium triflate
(In(OTf)3) is found to be a more effective catalyst than conventional
Lewis acids in promoting a number of transformations13 including,
for example, Friedel–Crafts acylation of alcohols and amines,14 tet-
rahydropyranylation of alcohols,15 and ring-opening of aziri-
dines.16 Our own work also found indium triflate to be a very
efficient catalyst for promoting nucleophilic ring-opening reac-
tions of iminonitroso-derived adducts.17 Herein we wish to report
the regio- and stereochemically controlled formation of hydroxa-
mic acids from indium triflate-mediated nucleophilic ring-opening
reactions of acylnitroso adducts 2 (Scheme 2).

Our investigation began with the treatment of N-phenylacetyl
[2.2.1] cycloadduct 2a with 0.5 equiv of In(OTf)3 in the presence
of three representative alcohols including MeOH, secondary alco-
hol, iPrOH, and tertiary alcohol, tBuOH, respectively, at room tem-
perature. The results are summarized in Table 1. We were pleased
to find that the reaction with MeOH generated a 7:86:7 ratio of
anti-1,2-:anti-1,4-:syn-1,4-methoxylated cyclopentene containing
hydroxamic acid products (10a:11a:12a)18 in 63% yield with
anti-1,4-product 11a being predominant within 1.5 h. The In(OTf)3

offered a more potent Lewis acid source, as was evident by the
shorter reaction times observed with the use of In(OTf)3. High re-
gio- and stereoselectivity were retained even when larger alcohol
nucleophiles such as iPrOH and tBuOH were used (entries 2–3).
The preference for anti-1,4-ring-opening products was greatly im-
proved compared to the reactions catalyzed by FeCl3 or CuCl2.19
The indium-catalyzed ring-opening reactions of N-alkoxy carba-
mate [2.2.1] cycloadduct 2b were also investigated under the same
reaction conditions. Separate reactions with each of the above-
mentioned alcohols gave the corresponding N-hydroxy carbamate
products in moderate yields (59–61%) with compromised stereose-
lectivity (Table 1, entries 4–6). For example, use of methanol gave a
61% yield of a 32:52:16 ratio of anti-1,2-:anti-1,4-:syn-1,4-ring-
opened products (10d:11d:12d) (entry 4). A plausible mechanism
is that anti-1,4- and anti-1,2-products, 11a–f and 10a–f, might re-
sult from direct (SN2) and indirect (SN2-like) nucleophilic displace-
ment of the oxygen during the attack of alcohols (Scheme 3, paths
A and B), though a competitive open cation process might also ac-
count for the mixed stereoselectivity and formation of the minor
syn-1,4 products (12a–f).

We next examined the reactions of 3-aza-2-oxabicy-
clo[2.2.2]oct-5-ene systems 2c–d with In(OTf)3 in the presence of
alcohols. Because of the decreased ring strain and consequent re-
duced reactivity of the [2.2.2] substrates relative to the [2.2.1] sub-
strates, we conducted reactions at elevated temperature (70 �C).
The results are summarized in Table 2. Nucleophilic ring-opening
reaction of N-phenylacetyl [2.2.2] cycloadduct 2c with 0.5 equiv
of In(OTf)3 and MeOH was complete within 6 h, generating a 57%
yield of a 18:82 ratio of anti-1,2-:anti-1,4-products (10g:11g) with
anti-1,4-compound 11g as the major product (entry 1). No syn-1,4-
product 12g was detected, which further supported the proposed



Table 2
In(OTf)3-mediated nucleophilic ring-opening reactions of cycloadducts 2c–d (n = 2) with different alcohols

Entrya Substrate R2OH Temp (�C) Time (h) Products (n = 2) Yieldb (%) Product ratios,c 10:11:12 R1 R2

1 2c MeOH 70 6 10g–12g 57 18:82:0 Bn Me
2 2c iPrOH 70 6 10h–12h 54 17:83:0 Bn iPr
3 2c tBuOH 70 6 10i–12i 51 20:80:0 Bn tBu
4 2d MeOH 70 24 10j–12j 50 25:75:0 OtBu Me
5 2d iPrOH 70 24 10k–12k 45 44:56:0 OtBu iPr
6 2d tBuOH 70 24 10l–12l 43 37:63:0 OtBu tBu

a 0.5 equiv of In(OTf)3.
b Isolated yield.
c Determined by 1H NMR of crude reaction mixture.
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reaction mechanism as shown in Scheme 3. In contrast, previous
studies7a reported a mixture of anti-1,2-:anti-1,4-:syn-1,4-products
(10g:11g:12g) when cycloadduct 2c was treated with CuSO4 or
CuCl2 in the presence of MeOH. Compounds 10g and 11g were
readily separable by column chromatography, and their regio-
and stereochemistries were determined by relevant NMR experi-
ments.20 Similar results were obtained when iPrOH and tBuOH
were used (entries 2–3). The reactions with carbamate-based
[2.2.2] cycloadduct 2d required prolonged reaction time. In this
case, exclusive anti-1,2-products 10j–l and anti-1,4-products 11j–
l were obtained in moderate yields with MeOH, iPrOH, and tBuOH,
respectively (entries 4–6).

In summary, we found that indium triflate is an effective Lewis
acid in promoting the nucleophilic ring-opening of a variety of
acylnitroso hetero Diels–Alder cycloadduct systems. Predominant
anti-1,4-hydroxamic acid containing cycloalkenes were obtained
with [2.2.1] systems. Exclusive anti-1,2-products and anti-1,4-
products with a ratio up to 17:83 were generated with [2.2.2]
systems.
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